Information-theoretic characterization of the Subregular Hierarchy

Goal

To link two notions of complexity:

- Formal language theory (FLT) (Hopcroft and Ullman, 1979; Heinz, 2018)
- Statistical complexity theory (Feldman and Crutchfield, 1998)

Why?

Statistical complexity theory quantifies the **memory requirements** for generating a sequence incrementally. Limitations of human working memory may explain why natural language occupies the formal complexity class that it does.

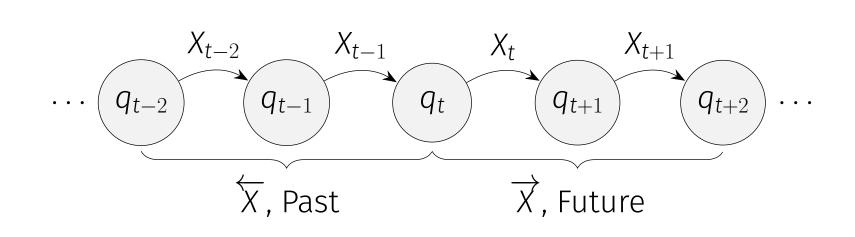
Probabilistic Deterministic Finite-State Automata (PDFAs)

A Probabilistic Deterministic Finite-State Automaton (PDFA) has:

- Internal states Q, an alphabet Σ ,
- an emission distribution $O: \mathcal{Q} \to \Sigma$ (a stochastic function), and
- a transition function $T: \mathcal{Q} \times \Sigma \to \mathcal{Q}$ (a deterministic function).

To construct a stochastic process from a PDFA: whenever the PDFA emits an end-of-word symbol, let it transition back into its initial state. The resulting infinite stream of symbols is a **stationary ergodic stochastic process**.

• Let X be any stochastic process generating sequences of symbols indexed as $\ldots X_{t-2}, X_{t-1}, X_t, X_{t+1}, \ldots$



Huteng Dai¹ and Richard Futrell²

Rutgers University¹ and University of California, Irvine²

Statistical Complexity

The statistical complexity of *X* is the minimal amount of information about the past which must be stored in incremental memory in order to correctly generate the future:

$$S \equiv \min_{\substack{M:D_{KL}[\vec{X}\mid|\vec{X}||\vec{X}|]=0}} H[M],$$

where $H[M] \equiv -\sum_{x} p_M(x) \log p_M(x).$

Statistical complexity breaks into two terms (where *I*[X : Y] is **mutual information**):

> $S = H[M] = I[M : \overrightarrow{X}] + H[M|\overrightarrow{X}]$ $= I[\overleftarrow{X} : \overrightarrow{X}] + H[M|\overrightarrow{X}]$

Some Example PDFAs

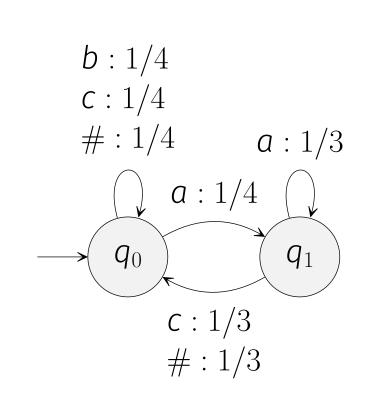


Figure 1: SL₂ PDFA of $\neg ab$, $\Sigma = \{a, b, c\}$

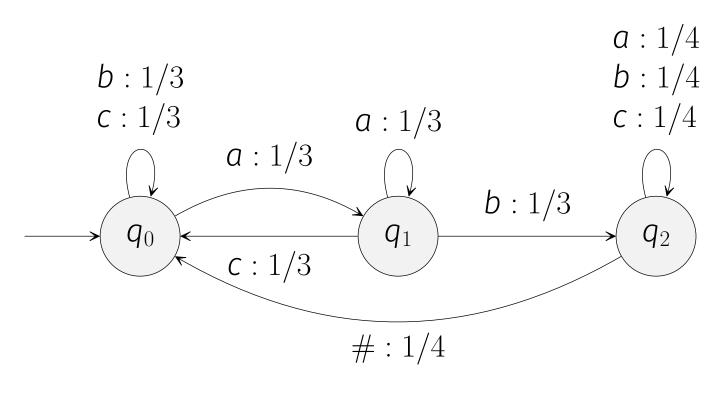


Figure 2: LT₂ PDFA of Some-*ab*, $\Sigma = \{a, b, c\}$

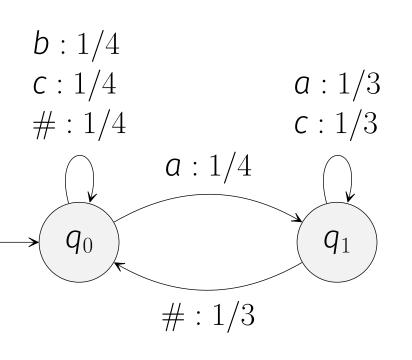


Figure 3: SP₂ PDFA of $\neg a \dots b$, $\Sigma = \{a, b, c\}$

Calculation of Quantities for PDFAs

• The **statistical complexity** in a minimal PDFA is the entropy of the stationary distribution Q over states, given by the first left eigenvector of the state transition matrix, whose entries are given by:

 $p(q_{t+1}|q_t) = \sum p_O(x_t|q_t)\delta_{q_{t+1}=T(q_t,x_t)}.$

• For SL_k languages, **excess entropy**

 $E = I[X_{t-k+1}, \ldots, X_{t-1} : X_t, \ldots, X_{t+k-1}].$ • For other languages, an SL_k approximation always gives a **lower bound on** *E* (Travers and Crutchfield, 2011). We compute lower bounds on *E* from SL₇ approximations.

Quantities

- Excess entropy E is the amount of information in the past which is actually used to predict the future.
- **Crypticity** C is the amount of information which must be stored, but which ends up being useless.
- E/S ratio is the proportion of bits stored in memory which end up being useful.

Main Result

In a **series of example languages**, we find that increasing FLT complexity in the subregular hierarchy correlates with **E/S ratio**.

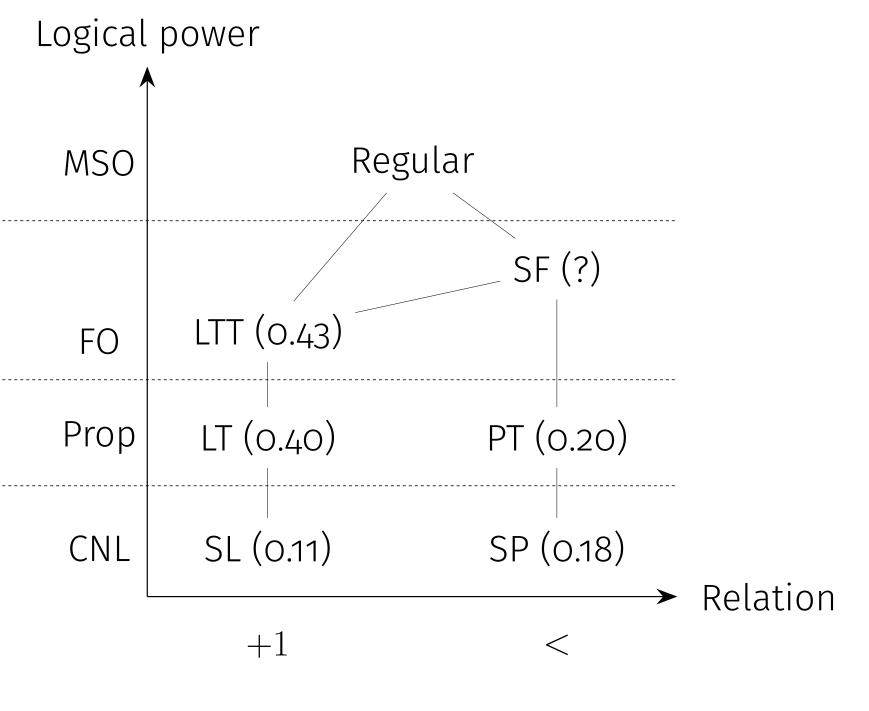
> LT_2 LTT_2 SP_2 PT_2 SL_2 1.94 0.97 1.53 0.99 1.53 $0.09 \ge 0.61 \ge 0.83 \ge 0.18 \ge 0.30$ $0.75 \leq 0.91 \leq 1.10 \leq 0.80 \leq 1.22$ E/S 0.11 \geq 0.40 \geq 0.43 \geq 0.18 \geq 0.20

Table 1: Information quantities for PDFAs

Based on our examples, we **conjecture** that crypticity correlates with logical power in the subregular hierarchy. In future work, we will formalize this idea.

126-195. 1223.

We thank Jim Crutchfield, Jeff Heinz, Adam Jardine, and anonymous reviewers for their comments and insights.



References

Feldman, D. P. and Crutchfield, J. P. (1998). Measures of statistical complexity: Why? *Physics Letters A*, 238(4-5):244–252.

Heinz, J. (2018). The computational nature of phonological generalizations. Phonological Typology, Phonetics and Phonology, pages

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages and Computation. Addison-Wesley.

Travers, N. F. and Crutchfield, J. P. (2011). Asymptotic synchronization for finite-state sources. Journal of Statistical Physics, 145(5):1202–

Acknowledgements

RUTGERS

Take a picture to download the extended abstract