

Scalar similarity and gradient featural representation in Lezgian laryngeal harmony

Department of Linguistics and Center for Cognitive Science

Overview

- Similarity is crucial in evaluating both input-output and surface correspondence in Agreement by Correspondence (Rose and Walker, 2004).
- However, the **representational structure** necessary to compute similarity is often left undefined.
- I encode similarity as a weighted featural lattice in Gradient Harmonic Grammar (Smolensky et al., 2014).
- The gradient representational system correctly predicts patterns of laryngeal consonant co-occurrence in Lezgian, providing a reanalysis of (Ozburn and Kochetov, 2018).

Lezgian

- Co-occurring stops in Lezgian generally agree in LARYNGEAL.
- Yet surprisingly $T^h \leftrightarrow T$ and $T \leftrightarrow D$ (T'=Ejective, T=Voiceless, T^h=Aspirated, D=Voiced) are also overrepresented in the corpus.
- Over-represented laryngeal co-occurrences in *Lezgian O/E>1*

[q'ats'un]	'get dirty'
[qaqa]	'ready'
[midad]	'grieve'
[t∫ ^h ip ^h]	'fool'
[k ^h utsun]	'to flush'
[kudaj]	'hot'
	[qaqa] [midad] [tʃ ^ħ ip ^ħ] [k ^ħ utsun]

Proposal

 δ_f

- The challenge is to define similarity as to allow overrepresented but disharmonic exceptions while penalizing the underrepresented structures.
- Perceptual distance/similarity is defined as the summed weights of unshared features: $distance_{\mathbf{w}}(x, y) = \sum_{f \in \mathcal{F}} w_f \cdot \delta_f(x, y),$ categorical similarity

$$(x,y) = \begin{cases} 0, \text{ if } x \text{ and } y \text{ share the feature } f \\ 1, \text{ else} \end{cases}$$

- Corr $[d \le k]$ is proposed with respect to the similarity metric: if *distance* $\leq k$, two segments must be in correspondence.
- The weights on features factor into the computation of IDENT-IO and IDENT-CC ($\mathcal{P} = w \times w_f$).

Input	Output		ID-CC[Laryngeal]	
		w = 20	w = 18	w = 5
i. /efsigun/	a. $[efs_x ig_y un][d. = 0.2]$ S			
	b. $[efs_x ik_x un][d. = 0]$			0.2
	c. $[efs_x ik'_x un][d. = 0.1]$			0.2 + 0.1
ii. /qafs'un/	a. $[q'_x afs'_x un][d. = 0]$ S			0.2
	b. $[q_x a f s'_x u n] [d. = 0.1]$		0.1	
	c. $[q_x a \hat{ts}^h_x un] [d. = 0.3]$		0.3	0.3 + 0.1
	d. $[q_x a f \hat{s}'_y u n] [d. = 0.1]$	1		
<u> </u>				

Conclusion

- The current study accounts for laryngeal co-occurrence patterns in Lezgian by introducing a gradient featural similarity lattice, over which the intra-featural similarity is evaluated.
- Moreover, the proposed lattice offers a universal structure to link language-specific phonetics to phonological features.

References:

35(3):407-440. spondence. Language, pages 475-531. uous and the discrete in cognition. Cognitive science, 38(6):1102-1138. for their comments and insights.

Huteng Dai

huteng.dai@rutgers.edu

Rutgers University

Ozburn, Avery and Kochetov, Alexei (2018). Ejective harmony in lezgian. Phonology,

Rose, Sharon and Walker, Rachel (2004). A typology of consonant agreement as corre-

Smolensky, Paul, Goldrick, Matthew, and Mathis, Donald (2014). Optimization and quantization in gradient symbol systems: a framework for integrating the contin-

Acknowledgements: I thank Adam McCollum, Adam Jardine, Bruce Tesar, Brian Pinsky, Robin Karlin, Chaoyi Chen, Sreekar Raghotham, and audiences at RULing 2019,