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Take-homemessage
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Given a well-defined representational structure and gradient similarity
metric, gradient representation is not orthogonal to universal feature
system and discrete symbolic computation.

The slides and code can be found on http://hutengdai.com

http://hutengdai.com


Similaritywe liveby
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Similarity defines the
natural classes that
interact in phonology.

“perceptual distinctness”,
“perceptibility”,
“contrast” ……

# Related research programs Selected works

1. Output-driven Phonology Tesar (2014)
2. Base-Reduplicant Correspondence McCarthy & Prince (1995)
3. Paradigm Uniformity Benua (1997)
4. Agreement by Correspondence Rose & Walker (2004)
5. Dispersion Theory Flemming (2013)
6. P-map Steriade (2001)
7. Similarity avoidance principle Frisch et al. (2004)
8. Contrastive Hierarchy Dresher (2009)
9. Learning bias Wilson (2006)
10. Exemplar phonology Bybee (2003)



Lesson fromABC
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[kʰ][kʰx] [u] [s][sy] [k][kx][kʰx][kʰx] [u]

/kʰ/ /u/ /s/ /k/ /u/
Ident-IO ✓Ident-IO: k↔kh

Ident-CC: k↔khIdent-CC: ✓
x

Bolivian Aymara (Rose & Walker, 2004)

Ident-IO[sg]
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Similarity andABC
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Similarity is encoded in the correspondence (Corr) hierarchy:

Corr[T↔T]≫ Corr[T↔D]≫ Corr[K↔T]≫ Corr[K↔D]≫ …

T’=Ejective, T=Voiceless, Tʰ=Aspirated, D=Voiced, D’=Implosive, T vs. K: the difference on Place.

(Rose & Walker, 2004)



Theprobabilistic natureof similarity
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Corr hierarchy is grounded on categorical featural similarity metrics:

similarity(x,y) = the number of shared features between x and y

the total number of shared and nonshared features

as in natural classes-based metrics (Frisch et al., 2004)

A Bayesian perspective:
Similarity is the belief that two segments x and y are (non-)identical;
This belief is updated by the observed shared features.

(Tenenbaum & Griffiths, 2001; Jaynes, 2003)



Structural assumption in feature system
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The distance from [+] to [-] is 1 step for any feature.
Any pairs of phonemes with the same amount of shared features have exactly
the same similarity;
If T↔T’ is sufficiently similar to be in agreement, then T↔Tʰ, T↔D, and T↔K
must be in agreement as well.



Lezgian laryngeal harmony
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∗T’↔T is a categorical constraint in Lezgian (N = 0), and always
triggers laryngeal harmony, while Tʰ↔T and T↔D are sufficiently
dissimilar to escape the impetus to agree.

Underrepresented co-occurrences (O/E < 1)
T↔T’, T’↔T, T’↔D, T’↔Tʰ, D↔T’, D↔Tʰ, Tʰ↔D, Tʰ↔T’, …

Overrepresented co-occurrences (O/E ≥ 1)
T’↔T’ [q’at͡s’un] ‘get dirty’ T↔T [qaqa] ‘ready’
Tʰ↔Tʰ [tʃʰipʰ] ‘fool’ D↔D [midad] ‘grieve’

Tʰ↔T [kʰut͡sun] ‘to flush’ T↔D [et͡sigun] ‘put’

(Ozburn & Kochetov, 2018)
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Challenge to categorical similaritymetrics
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The calculated similarity
neither aligns with the
co-occurrence constraints,
nor fits the distribution of
speech errors.

(Rose & King, 2007)

Inventory minimally dissimilar pairs Languages

T’, T, Th, D ∗T↔T’, ✓T↔D, ✓Th↔T … Lezgian, Ndebele
T’, T, D ∗T↔T’, ✓T↔D Amharic, Chaha, Chontal
T’, T, Th ∗T↔T’, ∗T↔Th Peruvian & Bolivian Aymara
T’, T, D’ ∗T↔T’, ✓T’↔D’ Tzotzil, Tzutujil, Yucatec
T’, T, D, D’ ∗T↔T’, ∗D’↔D, ✓T↔D … Hausa
T, D, D’ ∗D’↔D, ✓T↔D Bumo Izon, Kalabari Ijo

(Ozburn & Kochetov, 2018; Hansson, 2010, adapted)



Analysis: the special statusof [cg]
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Cross-linguistically, different features play different roles in similarity.

Only the difference on [cg] always triggers harmony

Hypothesis: the distance from [+cg] to [-cg] is systematically shorter
than in other Laryngeal features.

(Gallagher & Coon, 2009; Kochetov & Ozburn, 2014)



Acoustic cues
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Cross-linguistically, the difference
of VOT and preceding vowel
duration on [cg] is less distinctive
than [voice] and [sg].

(Beguš, 2017; Gallagher, 2010a)

Georgian (Beguš, 2017)
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What’s representation?

Representation 13

Representation is the
abstraction of phonetic and/or
phonological knowledge;

x (a segment/feature/string/similarity…)

continuous value

Gradient

{True,False}

Categorical



Gradient representation: Pros andCons

Representation 14

Pros: weighted/gradient (sub-)featural representation can easily
handle language-specific granularity;

(Ladefoged, 1969, 1972, 1973; Keating, 1985; Smolensky & Goldrick, 2016)

Cons:
High degree of freedom (cf. tone numbers);
The empirical/laboratory evidence is not always available;
Trade-off between granularity and generality;
e. g. universal feature system; typology; similarity metrics; modular representation, etc.

see criticism in Mackenzie (2009)



Proposal: weighted featural lattice

Representation 15

Lattice: the universal feature
system:

Partial order
(relative distance);
Bounds;

(Tesar, 2014; Magri, 2018)

F : [cg,voice,sg]
∗[+,+,+]

Dh: [−,+,+]

∗[+,−,+]

D’: [+,+,−]

Th: [−,−,+] D: [−,+,−] T’: [+,−,−]

T: [−,−,−]



Proposal: weighted featural lattice

Representation 15

Weight: the phonetic
distance between [+] and [-]

w[cg] < w[voice],w[sg]

Restriction: 0 < wf < 1

“How likely two features are

non-identical, given the observed

phonetic cues?”

F : [cg,voice,sg]
∗[+,+,+]

Dh: [−,+,+]

∗[+,−,+]

D’: [+,+,−]
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Representational space

Representation 16

cg

voice

sg

*

Dh

*

D’

phonological structure⇐⇒ discrete lattice

Th

T’
D

T



Representational space

Representation 16

cg

voice

sg

*
Dh*

D’

phonetic information⇐⇒ weighted lattice: scaled by [0.2, 0.4, 0.4]

Th

T’ D

T

0.2

0.4

0.4

0.4

0.4

0.2

0.4

0.4

0.2

0.4

0.2

0.4



Unconstrained representational space

Representation 17

y

x

z

*

Dh

*

D’
e. g. Hilbert space (Smolensky et al., 2014)

T

T’

D

Th



Alternative: segmental similarity scale

Representation 18

One-dimensional totally-ordered (weighted) similarity scale;

The relative similarity is encoded by adjacency.

D. . .T . . . K

Corr

(Rose & Walker, 2004, P.505)
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Alternative: segmental similarity scale

Representation 19

Corr[T↔D]≫ Corr[K↔T]≫ Corr[K↔D]

✓similarity(T,D) > similarity(T,K)
D. . .T . . . K

Corr



Alternative: segmental similarity scale

Representation 19

Corr[T↔D]≫ Corr[K↔T]≫ Corr[K↔D]

✓similarity(T,D) > similarity(T,K)
∗similarity(K,D) > similarity(K,T) D. . .T . . . K

Corr



Alternative: segmental similarity scale

Representation 19

A lattice represents a higher dimensional
space which captures the insights lost in an

one-dimensional similarity scale.

F : [voice,dorsal,coronal]
dʒ: [+,+,+]

tʃ: [−,+,+]

d: [+,−,+]

g: [+,+,−]

t: [−,−,+] k: [−,+,−] b: [+,−,−]

p: [−,−,−]



Computation 20

Computation



Phonetic distance

Computation 21

The phonetic distance between two segments x and y is computed
over a weighted featural lattice w:

distancew(x,y) =
∑
f ∈F

wf · δf (x,y), (summed weights of nonshared features)

δf (x,y) =

 0, if x and y share the feature f

1, else
(Wilson & Obdeyn, 2009)



Similarity asBayesianprobability

Computation 22

Phonological similarity is the belief that x and y are (non-)identical,
which is updated by the observed phonetic distance between two
segments.

similarityw(x,y) = 1−dissimilarityw(x,y)

= 1−
distancew(x,y)∑

f ∈F wf

This function converts the phonetic distance to a probability in [0,1].∑
f ∈F wf is the maximal distance between two segments.



Similarity of Laryngealpairs

Computation 23

C1↓C2→ T’ T D’ D Th Dh

T’ 1 0.8 0.6 0.4 0.4 0
T 0.8 1 0.4 0.6 0.6 0.2
D’ 0.6 0.4 1 0.8 0 0.4
D 0.4 0.6 0.8 1 0.2 0.6
Th 0.4 0.6 0 0.2 1 0.6
Dh 0 0.2 0.4 0.6 0.6 1

Tractable: the set of thresholds is always finite whatever the alphabet is.



Agreementby similarity

Computation 24

Ident-CC(Laryngeal, similarity ≥ k):
if similarity ≥ k in a 2-long subsequence,
penalize any difference in Laryngeal.

Ident-IO[Laryngeal]:
penalize any input-output difference in
Laryngeal.

The critical threshold is determined by the
lowest similarity that triggers harmony.

Id-CC(Laryn., s. ≥ 1)

Id-CC(Laryn., s. ≥ 0.8)

Id-IO[Laryngeal]

Id-CC(Laryn., s. ≥ 0.6)

Id-CC(Laryn., s. ≥ 0.4)



Formal language-theoretic computation

Computation 25

The 2-long subsequences in ∗[qats’un] include {q. . .a, q. . .ts’, q. . .u,
q. . .n, a. . .ts’, a. . .u, a. . .n, ts’. . .u, ts’. . .n, u. . .n} (Heinz, 2010)

[q’] [a] [ts’] [u] [n]

/q/ /a/ /ts’/ /u/ /n/
Ident-IO[Laryngeal]

Id-CC(Laryn., s. ≥ 0.8)
[ts][e] [i] [g] [u] [n]

/e/ /ts/ /i/ /g/ /u/ /n/

x

(Q & A: “Agreement by similarity vs. by projection”)



Constraint-basedanalysis

Computation 26

/qats’un/ Id-CC(Laryn., s. ≥ 0.8) Id-IO[Laryn.] Id-CC(Laryn., s. ≥ 0.6)

a. q…ts' [s. = 0.8] *! *

b. + q'…ts' [s. = 1] *

/etsigun/ Id-CC(Laryn., s. ≥ 0.8) Id-IO[Laryn.] Id-CC(Laryn., s. ≥ 0.6)

a. dz…g [s. = 1] *!

b. + ts…g [s. = 0.6] *

Classical OT (Prince & Smolensky, 2004)



Typology

Computation 27

The typology of
laryngeal harmony is
predicted by varying
critical thresholds.

Inventory Thresholds Pairs Languages

T’, T 0.8 ∗T↔T’ Gitksan, Chol
T’, T, D’ 0.8 ∗T↔T’, ✓T’↔D’, ✓T↔D’ Tzotzil, Tzutujil, Yucatec
T’, T, D, D’ 0.8 ∗T↔T’, ∗D’↔D, ✓T↔D, … Hausa
T’, T, Th, D 0.8 ∗T↔T’, ✓T↔D, ✓Th↔T … Ndebele, Lezgian
T, D, D’ 0.8 ∗D’↔D, ✓T↔D, ✓T↔D’ Bumo Izon, Kalabari Ijo
T’, T, D 0.8 ∗T↔T’, ✓T↔D, ✓T’↔D Amharic

0.4 ∗T↔T’, ∗T↔D, ∗T’↔D Chaha
T’, T, Th 0.4 ∗T↔T’, ∗T↔Th, ∗T’↔Th Peruvian & Bolivian Aymara

(Ozburn & Kochetov, 2018; Hansson, 2010, adapted)
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Balancebetween structure and substance

Theoretical implications 29

Substance-free approach: similarity relevant for motivating
phonological processes is based on underlying abstract phonological
representations;

e.g. Contrastive hierarchy (Mackenzie, 2009, 2011), GSR (Smolensky & Goldrick, 2016)

Phonetically grounded approach: supplement the universal feature
system with language-specific (sub)features, such as [long VOT], to
account for perceptual similarity.

(Gallagher, 2010a,b, 2012; Lionnet, 2017)



Modular representation

Theoretical implications 30

Lattice:
the phonological, abstract, symbolic,
universal structure of feature system;

Weight:
the phonetic, fine-grained, gradient,
language-specific information;
not in UR, and only available to SR in
the computation of input-output and
surface correspondence;

Representation

Phonology

Phonetics

Computation

Phonology

Phonetics



The interplayof phonologyandphonetics

Theoretical implications 31

Phonological structure Phonological similarity

Phonetic information

Phonological processes

The similarity is computed w.r.t. both phonological structure and phonetic information,
and this information is further used in phonological computation.



Futureworks

Theoretical implications 32

The weighting relation is testable in laboratory settings;
e.g. confusion matrix; neural featural encoding

Learning from distribution; (Wilson & Obdeyn, 2009; Mayer, 2020)

Phonological similarity in Sign Language. (Keane et al., 2017)



Take-homemessage

Theoretical implications 33

Given a well-defined representational structure and similarity metric,
gradient representation is not orthogonal to universal feature system
and discrete symbolic computation.

Find the slides and code on http://hutengdai.com, and feel free to contact me for questions
and collaborations!

http://hutengdai.com
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Gradient representationas abstraction

Q & A 2

The weights encode the phonetic information from closely-related
dimensions:

Distributional (Hall, 2009; Mayer & Daland, 2019; Mayer, 2020)

Substantial (Vitevitch & Luce, 1999; Mielke, 2012; Redmon, in prep.)



Abstractnessof gradient representation

Q & A 3

Phonetic measurement , weight on featural lattice:
Phonetic invariance doesn’t exist; (Pierrehumbert, 2016; Zellou & Tamminga, 2014)

Real-numbered representation is still an abstraction!



Categorical vs.weighted similaritymetrics

Q & A 4

Categorical similarity metrics / Gradient similarity metrics ,



Neural featural encoding

Q & A 5
Mesgarani et al. (2014)



GSR inUR: the roadnot taken

Q & A 6

Despite the ambition of correlating GSR and phonetics, Gradient
Symbolic Representation is a substance-free approach per se – the
weights are represented in UR and are not grounded by phonetics.
Reasons:

Tractable computing power↔ learnable grammar;
Restrictive representational space;
Testable weighting relation;
Well-defined similarity metrics – necessary for any Ident constraint.
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