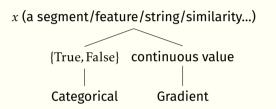
Gradient similarity in Lezgian laryngeal harmony: representation & computation


Huteng Dai

Department of Linguistics and RuCCs, Rutgers University

Given a well-defined **representational structure** and **similarity metric**, gradient representation is **not** orthogonal to universal feature system and discrete symbolic computation.

Find the slides and code on http://hutengdai.com

- Representation is abstraction;
- The abstract properties of gradience underlies various research programs: similarity, well-formedness, variability, etc.

Similarity we live by

Similarity defines the natural classes that interact in **phonology**, which is directly connected to **phonetic** information.

#	Related research programs	Selected works		
1.	Output-driven Phonology	Tesar (2014)		
2.	Base-Reduplicant Correspondence	McCarthy & Prince (1995)		
3.	Paradigm Uniformity	Benua (1997)		
4.	Agreement by Correspondence	Rose & Walker (2004)		
5.	Dispersion Theory	Flemming (2013)		
6.	P-map	Steriade (2001)		
7.	Similarity avoidance principle	Frisch et al. (2004)		
8.	Contrastive Hierarchy	Dresher (2009)		
9.	Learning bias	Wilson (2006)		
10.	Exemplar phonology	Bybee (2003)		

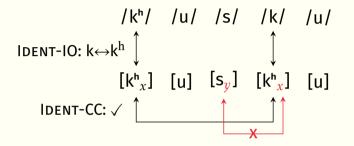
Similarity we live by

The linguistic inquiry of similarity is under the name of "contrast", "perceptibility", "perceptual distance/salience/distinctness".

#	Related research programs	Selected works		
1.	Output-driven Phonology	Tesar (2014)		
2.	Base-Reduplicant Correspondence	McCarthy & Prince (1995)		
3.	Paradigm Uniformity	Benua (1997)		
4.	Agreement by Correspondence	Rose & Walker (2004)		
5.	Dispersion Theory	Flemming (2013)		
6.	P-map	Steriade (2001)		
7.	Similarity avoidance principle	Frisch et al. (2004)		
8.	Contrastive Hierarchy	Dresher (2009)		
9.	Learning bias	Wilson (2006)		
10.	Exemplar phonology	Bybee (2003)		

Bolivian Aymara (Rose & Walker, 2004)

IDENT-IO[SG]


Bolivian Aymara (Rose & Walker, 2004)

 $CORR(T^{h}\leftrightarrow T) > IDENT-IO[SG]$

$$\begin{array}{c|ccccc} /k^{h} / u / /s / /k / /u / \\ \hline \\ Ident-IO: k \leftrightarrow k^{h} \uparrow & \uparrow \\ & [k^{h}_{x}] & [u] & [s] & [k^{h}_{x}] & [u] \\ \hline \\ Ident-CC: \checkmark \uparrow & \uparrow \end{array}$$

Bolivian Aymara (Rose & Walker, 2004)

IDENT-CC[SG], CORR(T^h \leftrightarrow T) > IDENT-IO[SG]

Bolivian Aymara (Rose & Walker, 2004)

IDENT-CC[SG], $CORR(T^{h}\leftrightarrow T) > IDENT-IO[SG]$

Similarity is encoded in the correspondence (CORR) hierarchy:

 $\mathsf{CORR}[\mathsf{T}{\leftrightarrow}\mathsf{T}] \gg \mathsf{CORR}[\mathsf{T}{\leftrightarrow}\mathsf{D}] \gg \mathsf{CORR}[\mathsf{K}{\leftrightarrow}\mathsf{T}] \gg \mathsf{CORR}[\mathsf{K}{\leftrightarrow}\mathsf{D}] \gg ...$

T'=Ejective, T=Voiceless, T^h=Aspirated, D=Voiced, D'=Implosive, T vs. K: the difference on PLACE.

(Rose & Walker, 2004)

The probabilistic nature of similarity

CORR hierarchy is grounded on **categorical** featural similarity metrics:

similarity(x, y) = $\frac{\text{the number of shared features between } x \text{ and } y}{\text{the total number of shared and nonshared features}}$

as in natural classes-based metrics (Frisch et al., 2004)

- A Bayesian perspective:
 - Similarity is the **belief** that two segments x and y are (non-)identical;
 - > This belief is updated by the observed shared features.

(Tenenbaum & Griffiths, 2001; Jaynes, 2003)

- The distance from [+] to [-] is 1 step for any feature.
 - Any pairs of phonemes with the same amount of shared features have exactly the same similarity;
 - If T↔T' is sufficiently similar to be in agreement, then T↔T^h, T↔D, and T↔K must be in agreement as well.

Lezgian laryngeal harmony

- *T'↔T is a categorical constraint in Lezgian (N = 0), and always triggers laryngeal harmony, while T^h↔T and T↔D are sufficiently **dissimilar** to escape the impetus to agree.
 - Underrepresented co-occurrences (O/E < 1)</p>

 $T {\leftrightarrow} T', \, T' {\leftrightarrow} T, \, T' {\leftrightarrow} D, \, T' {\leftrightarrow} T^h, \, D {\leftrightarrow} T', \, D {\leftrightarrow} T^h, \, T^h {\leftrightarrow} D, \, T^h {\leftrightarrow} T', \, ...$

- Overrepresented co-occurrences ($O/E \ge 1$)

(Ozburn & Kochetov, 2018)

Lezgian laryngeal harmony

- *T'↔T is a categorical constraint in Lezgian (N = 0), and always triggers laryngeal harmony, while T^h↔T and T↔D are sufficiently **dissimilar** to escape the impetus to agree.
 - Underrepresented co-occurrences (O/E < 1)</p>

 $T {\leftrightarrow} T', T' {\leftrightarrow} T, T' {\leftrightarrow} D, T' {\leftrightarrow} T^h, D {\leftrightarrow} T', D {\leftrightarrow} T^h, T^h {\leftrightarrow} D, T^h {\leftrightarrow} T', ...$

► Overrepresented co-occurrences (O/E ≥ 1)

T'↔T'	[q'at͡s'un]	'get dirty'	T↔T	[qaqa]	'ready'	
$T^{h} {\leftrightarrow} T^{h}$	[tʃʰipʰ]	'fool'	$D{\leftrightarrow} D$	[midad]	'grieve'	
T ^h ↔T	[kʰut͡sun]	'to flush'	T↔D	[etsigun]	'put'	
(Ozburn & Kochetov, 2018)						

Challenge to categorical similarity metrics

The calculated similarity neither aligns with the **co-occurrence** constraints, nor fits the distribution of **speech errors**.

(Rose & King, 2007)

Inventory	minimally dissimilar pairs	Languages
T', T, T ^h , D	$^{*}\mathbf{T}\leftrightarrow\mathbf{T'}, \sqrt[]{}T\leftrightarrowD, \sqrt[]{}T^{h}\leftrightarrowT \dots$	Lezgian, Ndebele
Т', Т, D	* T ↔ T ′, [√] T↔D	Amharic, Chaha, Chontal
T', T, T ^h	* T ↔ T', *T↔T ^h	Peruvian & Bolivian Aymara
T', T, D'	* T ↔ T' ,	Tzotzil, Tzutujil, Yucatec
T', T, D, D'	* T⇔T', * D'⇔D, [√] T⇔D	Hausa
T, D, D'	* D'⇔D, √T⇔D	Bumo Izon, Kalabari Ijo

Analysis: the special status of [cg]

- Cross-linguistically, different features play different roles in similarity.
- Only the difference on [cg] **always** triggers harmony
- Hypothesis: the distance from [+cG] to [-cG] is systematically shorter than in other LARYNGEAL features.

(Gallagher & Coon, 2009; Kochetov & Ozburn, 2014)

Acoustic cues

Cross-linguistically, the difference of VOT and preceding vowel duration on [cG] is less distinctive than [voice] and [sG].

(Beguš, 2017; Gallagher, 2010a)

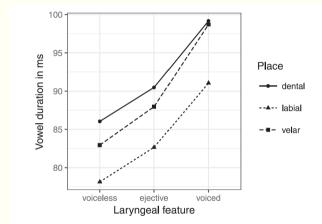
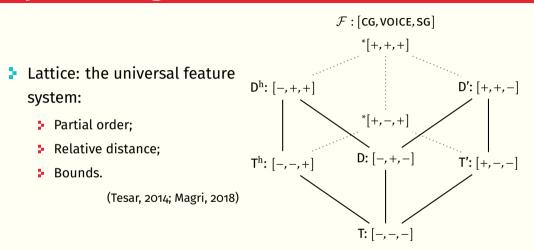
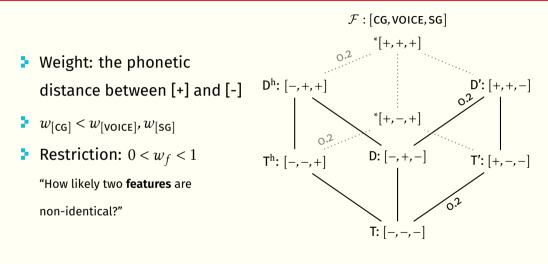


FIG. 2. Estimates of the effects of Laryngeal Features and Place of articulation on preceding vowel duration in ms (from a linear mixed effects model).

Georgian (Beguš, 2017)

Gradient representation: Pros and Cons


 Weighted/gradient/valued (sub-)featural representation can easily handle language-specific phonetic granularity;

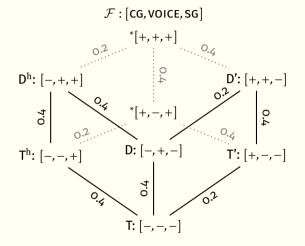

(Ladefoged, 1969, 1972, 1973; Keating, 1985)

- Cons:
 - High degree of freedom (cf. tone numbers);
 - > The empirical/laboratory evidence is not always available;
 - > Trade-off between granularity and generality;

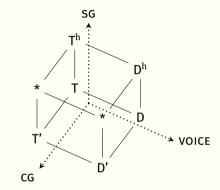
e. g. universal feature system; typology; similarity metrics; modular representation, etc. see criticism in Mackenzie (2009)

Representation

 \mathcal{F} : [CG, VOICE, SG] *[+.+.+` Weight: the phonetic $D^{h}: [-, +, +]$ distance between [+] and [-] *[+,-,+] 7.0 $w_{[CG]} < w_{[VOICE]}, w_{[SG]}$ **Restriction:** $0 < w_f < 1$ D: [-.+.- $T^{h}: [-, -, +]$ "How likely two **features** are 0.4 non-identical?" T: [-, -, -]

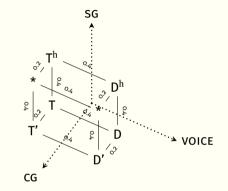

D': [+, +, -]

T': [+, -, -]

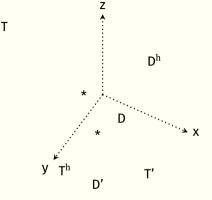

0.4

0.2

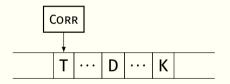
- Weight: the phonetic distance between [+] and [-]
- ▶ $w_{[CG]} < w_{[VOICE]}, w_{[SG]}$
- **Restriction:** $0 < w_f < 1$
 - "How likely two **features** are
 - non-identical?"



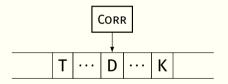
Representational space


phonological structure \iff discrete lattice

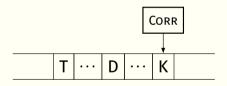
Representational space


phonetic substance \iff weighted lattice: scaled by [0.2, 0.4, 0.4]

Unconstrained representational space


e.g. Hilbert space in Smolensky et al. (2014)

- One-dimensional totally-ordered (weighted) similarity scale;
- > The relative similarity is encoded by **adjacency**.

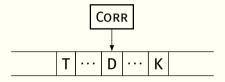

(Rose & Walker, 2004, P.505)

- One-dimensional totally-ordered (weighted) similarity scale;
- > The relative similarity is encoded by **adjacency**.

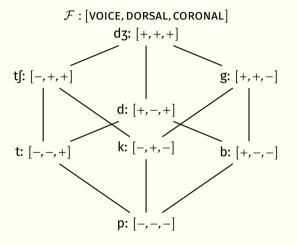
(Rose & Walker, 2004, P.505)

- One-dimensional totally-ordered (weighted) similarity scale;
- > The relative similarity is encoded by **adjacency**.

(Rose & Walker, 2004, P.505)


 $CORR[T \leftrightarrow D] \gg CORR[K \leftrightarrow T] \gg CORR[K \leftrightarrow D]$

✓ similarity(T,D) > similarity(T,K)


 $CORR[T \leftrightarrow D] \gg CORR[K \leftrightarrow T] \gg CORR[K \leftrightarrow D]$

√ similarity(T,D) > similarity(T,K) *similarity(K,D) > similarity(K,T)

A lattice represents a higher dimensional space which captures the insights lost in an one-dimensional similarity scale.

Similar problem exists in many other scales.

Computation

Phonetic distance

The phonetic distance between two segments x and y is computed over a weighted featural lattice w:

$$distance_{\mathbf{w}}(x, y) = \sum_{f \in \mathcal{F}} w_f \cdot \delta_f(x, y), \qquad (\text{summed weights of nonshared features})$$
$$\delta_f(x, y) = \begin{cases} 0, \text{ if } x \text{ and } y \text{ share the feature } f \\ 1, \text{ else} \end{cases}$$
(Wilson & Obdevn, 2009)

1

Similarity as Bayesian probability

Phonological similarity is the belief that x and y are (non-)identical, which is updated by the observed phonetic distance between two segments.

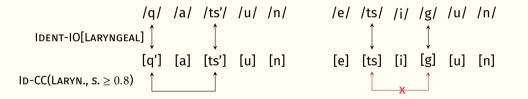
similarity_w(x, y) = 1 - dissimilarity_w(x, y)
= 1 -
$$\frac{\text{distance}_w(x, y)}{\sum_{f \in \mathcal{F}} w_f}$$

- This function converts the *phonetic distance* to a probability in [0, 1].
- The sum of all featural weights ∑_{f∈F} w_f is the maximal distance between two segments (o shared features). This knowledge is encoded in the lattice.

Similarity of LARYNGEAL pairs

C1↓C2→	Τ'	т	D'	D	T^{h}	D^{h}
T'	1	0.8	0.6	0.4	0.4	0
Т	0.8	1	0.4	0.6	0.6	0.2
D'	0.6	0.4	1	0.8	0	0.4
D	0.4	0.6	0.8	1	0.2	0.6
T^{h}	0.4	0.6	0	0.2	1	0.6
D^{h}	о	0.2	0.4	0.6	0.6	1

Whatever the alphabet is, the set of thresholds is always finite.


Agreement by similarity

- ► IDENT-CC(LARYNGEAL, SIMILARITY $\geq k$): if similarity $\geq k$ in a 2-long subsequence, penalize any difference in LARYNGEAL.
- IDENT-IO[LARYNGEAL]: penalize any input-output difference in LARYNGEAL.
- The critical threshold is determined by the lowest similarity that triggers harmony.

```
ID-CC(LARYN., S. \geq 1)
ID-CC(LARYN., S \ge 0.8)
  ID-IO[LARYNGEAL]
ID-CC(LARYN...S. > 0.6)
ID-CC(LARYN.. S. \geq 0.4)
```

Formal language-theoretic computation

The 2-long subsequences in *[qats'un] include {q...a, q...ts', q...u, q...n, a...ts', a...u, a...n, ts'...u, ts'...n, u...n}
(Heinz, 2010)

(Q & A: "Agreement by similarity vs. by projection")

Constraint-based analysis

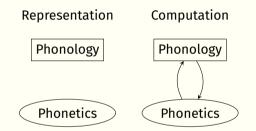
/qats'un/	ID-CC(LARYN., S. ≥ 0.8)	ID-IO[LARYN.]	ID-CC(LARYN., S. ≥ 0.6)
a. qats'un [s. = 0.8]	*!		*
b. 🖙 q'ats'un [s. = 1]		*	

/etsigun/	ID-CC(LARYN., S. ≥ 0.8)	ID-IO[LARYN.]	ID-CC(LARYN., S. ≥ 0.6)
a. edzigun [s. = 1]		*!	
b. a etsigun [s. = 0.6]			*

Classical OT (Prince & Smolensky, 2004)

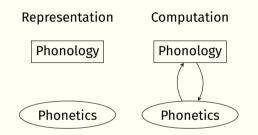
Typology

The typology of laryngeal harmony is predicted by varying critical thresholds.


Inventory	Thresholds	Pairs	Languages
Т', Т	0.8	*T⇔T'	Gitksan, Chol
T', T, D'	0.8	*T \leftrightarrow T', \checkmark T' \leftrightarrow D', \checkmark T \leftrightarrow D'	Tzotzil, Tzutujil, Yucatec
T', T, D, D'	0.8	$^{*}T\leftrightarrow T'$, $^{*}D'\leftrightarrow D$, $^{\checkmark}T\leftrightarrow D$,	Hausa
T', T, T ^h , D	0.8	$^{*}T \leftrightarrow T'$, $^{\checkmark}T \leftrightarrow D$, $^{\checkmark}T^{h} \leftrightarrow T$	Ndebele, Lezgian
T, D, D'	0.8	$^{*}D' \leftrightarrow D, \sqrt[]{}T \leftrightarrow D, \sqrt[]{}T \leftrightarrow D'$	Bumo Izon, Kalabari Ijo
T', T, D	0.8	*T \leftrightarrow T', \checkmark T \leftrightarrow D, \checkmark T' \leftrightarrow D	Amharic
	0.4	*T⇔T', *T⇔D, *T'⇔D	Chaha
Т', Т, Т ^h	0.4	$^{*}T \leftrightarrow T'$, $^{*}T \leftrightarrow T^{h}$, $^{*}T' \leftrightarrow T^{h}$	Peruvian & Bolivian Aymara

Theoretical consequences

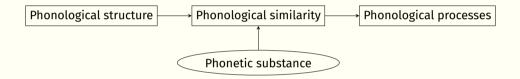
Modular representation


Lattice:

- the phonological, abstract, symbolic, universal structure of feature system;
- it tells you how many (non-)shared features between two segments.

Modular representation

- Weight:
 - the phonetic, fine-grained, gradient, language-specific substance;
 - not in UR, and only available to SR in the computation of input-output and surface correspondence.
 - The only addition is one vector!



Structure + Gradience

- Contrastive hierarchy: structure matters similarity relevant for motivating phonological processes is based on abstract phonological representations; (Mackenzie, 2009, 2011)
- Perceptual grounding approach: supplement the universal feature system with language-specific auditory features, such as [long VOT], to account for perceptual similarity.

(Gallagher, 2010a,b, 2012)

The interplay of phonology and phonetics

The similarity is computed w.r.t phonological structure and phonetic substance, and this information is further used in phonological computation.

Future directions

- ➤ How general is the relation w_[CG] < w_[VOICE], w_[SG]?
- Laboratory evidence:
 - Confusion matrix

(Miller & Nicely, 1955; Johnson & Babel, 2010)

Neural featural encoding

(Mesgarani et al., 2014, Q & A)

Learning weighted features from distribution/patterning

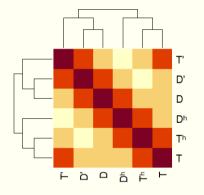
(Wilson & Obdeyn, 2009; Mayer & Daland, 2019; Mayer, 2020)

 Given a well-defined representational structure and similarity metric, gradient representation is not orthogonal to universal feature system and discrete symbolic computation;

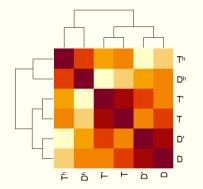
Find the slides and code on http://hutengdai.com, and feel free to contact me for questions and collaborations!

Acknowledgement

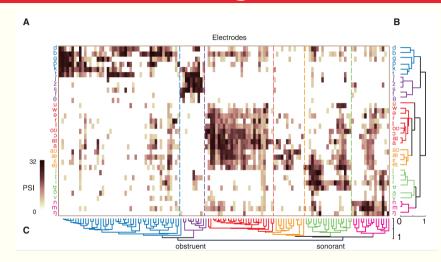
I thank Adam McCollum, Mariapaola D'Imperio, Adam Jardine, Bruce Tesar, Brian Pinsky, Robin Karlin, Akinbiyi Akinlabi, and audiences at LSA 2020 and Rutgers Phonology and Phonetics Research Group (PhonX), for their comments and insights. My special thanks are extended to Alan Yu for providing the valuable recordings of Lezgian.



Abstractness of gradient representation


- Phonetic measurement ≠ weight on featural lattice:
 - Phonetic invariance doesn't exist; (Pierrehumbert, 2016; Zellou & Tamminga, 2014)
 - > Real-numbered representation is still an abstraction!

Categorical vs. weighted similarity metrics



Categorical similarity metrics 🐵

Gradient similarity metrics ©

Neural featural encoding

Mesgarani et al. (2014)

Beguš, G. (2017). Effects of ejective stops on preceding vowel duration. *The Journal of the Acoustical Society of America*, 142(4), 2168–2184.

Benua, L. (1997). *Transderivational identity: Phonological relations between words* (Unpublished doctoral dissertation). University of Massachusetts Amherst.

Bybee, J. (2003). Phonology and language use (Vol. 94). Cambridge University Press.

Dresher, B. E. (2009). *The contrastive hierarchy in phonology* (Vol. 121). Cambridge University Press.

Flemming, E. S. (2013). Auditory representations in phonology. Routledge.

Frisch, S. A., Pierrehumbert, J. B., & Broe, M. B. (2004). Similarity avoidance and the OCP. *Natural Language & Linguistic Theory*, 22(1), 179–228.

Gallagher, G. (2010a). *The perceptual basis of long-distance laryngeal restrictions* (Unpublished doctoral dissertation). Massachusetts Institute of Technology.

Gallagher, G. (2010b). Perceptual distinctness and long-distance laryngeal restrictions. *Phonology*, *27*(3), 435–480.

Gallagher, G. (2012). Perceptual similarity in non-local laryngeal restrictions. *Lingua*, 122(2), 112–124.

- Gallagher, G., & Coon, J. (2009). Distinguishing total and partial identity: Evidence from chol. Natural Language & Linguistic Theory, 27(3), 545–582.
- Heinz, J. (2010). Learning long-distance phonotactics. *Linguistic Inquiry*, 41(4), 623–661.
- Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.
- Johnson, K., & Babel, M. (2010). On the perceptual basis of distinctive features: Evidence from the perception of fricatives by dutch and english speakers. *Journal of phonetics*, 38(1), 127–136.
- Keating, P. (1985). Universal phonetics and the organization of grammars. In V. Fromkin (Ed.), *Phonetic linguistics: Essays in honor of Peter Ladefoged* (p. 115-132). Orlando, FL: Academic Press.

Kochetov, A., & Ozburn, A. (2014). Categorical and gradient laryngeal harmony in lezgian. In Uc berkeley phonology lab annual report (p. 460).

Ladefoged, P. (1969, September). The measurement of phonetic similarity. In *International Conference on Computational Linguistics COLING 1969: Preprint no. 57.* Sånga Säby, Sweden. Retrieved from https://www.aclweb.org/anthology/C69-5701

Ladefoged, P. (1972). Phonetic prerequisites for a distinctive feature theory. *Papers in linguistics and phonetics to the memory of Pierre Delattre*, 273–285.

Ladefoged, P. (1973). The features of the larynx. Journal of phonetics, 1(1), 73-83.

Mackenzie, S. (2009). *Contrast and similarity in consonant harmony processes* (Unpublished doctoral dissertation). University of Toronto.

Mackenzie, S. (2011). Contrast and the evaluation of similarity: Evidence from consonant harmony. *Lingua*, 121(8), 1401–1423.

- Magri, G. (2018). Output-drivenness and partial phonological features. *Linguistic Inquiry*, 49(3), 577–598.
- Mayer, C. (2020). An algorithm for learning phonological classes from distributional similarity. *Phonology*.
- Mayer, C., & Daland, R. (2019). A method for projecting features from observed sets of phonological classes. *Linguistic Inquiry*, 1–85.
- McCarthy, J. J., & Prince, A. (1995). Faithfulness and reduplicative identity. *Linguistics Department Faculty Publication Series*, 10.
- Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. *Science*, *343*(6174), 1006–1010.
- Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among some english consonants. *The Journal of the Acoustical Society of America*, *27*(2), 338–352.
- Ozburn, A., & Kochetov, A. (2018). Ejective harmony in lezgian. Phonology, 35(3), 407–440.

Pierrehumbert, J. B. (2016). Phonological representation: Beyond abstract versus episodic. Annual Review of Linguistics.

- Prince, A., & Smolensky, P. (2004). Optimality theory: Constraint interaction in generative grammar malden. *MA: Blackwell*.
- Rose, S., & King, L. (2007). Speech error elicitation and co-occurrence restrictions in two ethiopian semitic languages. *Language and Speech*, *50*(4), 451–504.
- Rose, S., & Walker, R. (2004). A typology of consonant agreement as correspondence. *Language*, 475–531.
- Smolensky, P., Goldrick, M., & Mathis, D. (2014). Optimization and quantization in gradient symbol systems: a framework for integrating the continuous and the discrete in cognition. *Cognitive science*, *38*(6), 1102–1138.
- Steriade, D. (2001). The phonology of perceptibility effects: the p-map and its consequences for constraint organization. *Ms., UCLA*.

- Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and bayesian inference. Behavioral and brain sciences, 24(4), 629–640.
- Tesar, B. (2014). *Output-driven phonology: Theory and learning* (No. 139). Cambridge University Press.
- Wilson, C. (2006). Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science*, *30*(5), 945–982.
- Wilson, C., & Obdeyn, M. (2009). Simplifying subsidiary theory: statistical evidence from arabic, muna, shona, and wargamay. (ms. Johns Hopkins University)
- Zellou, G., & Tamminga, M. (2014). Nasal coarticulation changes over time in philadelphia english. Journal of Phonetics, 47, 18–35.