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Roadmap

• Jäger & Rogers (2012)
1. Chomsky Hierarchy and cognitive complexity
2. Application in natural language syntax
3. Application in phonology: subregular hierarchy 

(return to first-order logic in last meeting)
4. Artificial Grammar Learning (AGL)

• Team-based games incoming—get ready!
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We will learn

• A fresh perspective from (theoretical) computer science
• …even questions in coding interviews.
• I will only talk about discrete models here. 

X



Assumptions

• I will only talk about discrete models here. 

X



Chomsky Hierarchy: 
overview

X



Background
1. Turing (1950): “Can machines think?” 

• Turing proved that any machine can simulate the behavior of 
any other machine, given enough memory and time. 

• Also earliest state machine and the idea of learning machine. 
2. Chomsky (1956) “Three Models for The Description of 

Language”
• Military-sponsored project to teach computers to understand 

English commands, but "...basically the military didn’t care 
what you were doing."

• Chomsky asked: How can we provide a finite grammar that 
generates all the sentences of English and only these?
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https://www.youtube.com/watch?v=lWGhJ63OXxM#t=67m44s
https://www.youtube.com/watch?v=lWGhJ63OXxM#t=67m44s


Chomsky Hierarchy

push-down

finite-state

linear bounded 

Turing machine

context-free

context-sensitive

recursively enumerable 

regular

more working memory
more complex
more logical power
less restricted

grammars (left) and automata (right)

Chomsky 1956, 1959; Chomsky & Schützenberger 1963
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finite-stateregular

Regular language

Format: A → xB  or A → x
A B

x

x: terminal
A/B: nonterminal

Finite-state Automata

rewrite rules (left) and automata (right)
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“replace A with xB“

can’t have A → xBy 



Input: abb

A A
a

Finite-state Automata

b
B B

b

Input: bba

accept

A B
b b

B ?
a

1st line: starting symbol
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Link to the Python code: https://tinyurl.com/2p99j4u7

https://tinyurl.com/2p99j4u7


Pikachu language
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q0 q1

q2

pi

chu

ka

u

pi *kapichu
pika *kachu
pikachu *chupi
pikapika *chu
pikapikachuuuuu *pichu

FSA?



Navajo sibilant harmony

S → cS 
S → vS 
S → sA 
S → ʃB 

B → cB 
B → vB 
B → ʃB

A → cA 
A → vA 
A → sA 

S → ε 
A → ε 
B → ε

v: any vowel 
c: any consonant other than {s, ʃ}

SS

c
v c

v

ʃ

s

c
v

s

SA SB

ʃ

 from Heinz (2010)
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Stress patterns
A. Primary stress falls on the initial syllable and there is no secondary stress.
B. Primary stress falls on the final syllable. and secondary stress falls on 

other odd syllables, counting from the right.
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Your turn!



 from Hunter (2020)

Some syntactic rules are regular
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Your turn!



FSAs are awesome

1. Well-defined: Myhill-Nerode Theorem;
• You can intersect several FSAs to get another FSA;
• You can encode an entire corpus in an FSA;

2. You don’t need a separate memory storage;
3. They are directed graphic models: you can convert them 

to Hidden Markov Models and Bayesian networks with 
some twists.
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Myhill-Nerode Theorem
Given a language L and x, y are string over ∑*, if for every string z ∈ ∑*, xz, yz ∈ 
L or xz, yz ∉ L then x and y are said to be indistinguishable over language L. 
Formally, we denote that x and y are indistinguishable over L by the following 
notation : x ≡L y. 

A language is regular if and only if ≡L partitions ∑* into finitely many 
equivalence classes. If ≡L partitions ∑* into n equivalence classes, then a minimal 
DFA recognizing L has exactly n states. 

• In practice, it's used to minimize DFAs by merging states that are equivalent, 
thus simplifying the automaton without changing the language it recognizes.

• Theoretically, it provides a way to prove that certain languages are not regular 
by demonstrating that there are infinitely many equivalence classes (meaning 
there's no way to construct a finite automaton to recognize the language).

X



 from Jäger & Rogers (2012)

Link to the Python code: https://tinyurl.com/2p99j4u7
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Regular vs. non-regular

https://tinyurl.com/2p99j4u7


Homework
Describe Japanese syllable structure in the most restrictive 
logic and automata you learned. Most syllables in Japanese 
conform to (C)V(N), where C is a consonant, V is a vowel, and 
N is a nasal consonant that can appear at the end of syllables. 

Japanese English Syllable 
Structuresakura さくら Cherry blossom CV.CV.CV

tomodachi ともだち Friend CV.CV.CV.CV
shinbun しんぶん Newspaper CVN.CVN
nihongo にほんご Japanese Language CV.CVN.CV
tsukue つくえ Desk CV.CV.V

Optional: write a code to recognize Japanese syllable structure!



Context-free language

push-down

finite-state

context-free

regular

Format: A → ω

q0 q1

a; b → c ω: non-empty string of either 
terminal or non-terminal

a: input symbol
b: top stack symbol to be poped
c: symbol to be pushed into stack

Template

stack
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First in last out



Input: aabb

q0 q0
ε; ε → Z 

Push-down Automata

S → aAb
A → aAb
A → ε q0

b; A → ε
q1 q2

ε; ε → Z 

a; ε → A b; A → ε

ε; Z → ε

anbn, n ≥ 1

a; ε → A
q0 q0

a; ε → A

A
A

b; A → ε
q1

b; A → ε
q1

Z

accept
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English nested embeddings
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A → neither A nor
A → ε
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Homework 2: Dyck
Describe Dyck language, the set of well nested parentheses 
in pushdown automata.

Optional: write a code to recognize Dyck language!



Context-sensitive language

push-down

finite-state

linear bounded 

context-free

context-sensitive

regular

Format: φAψ→φωψ

q0 q1

a; X → L 

φ, ω, ψ: non-empty string of 
either terminal or non-terminal

a: input symbol
X: action (what to write)
L: moving direction either left or right

Template

|φ| |ψ|≤

a a b b c c⋊ ⋉
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Input: aabbcc

q0 q1
a: A → R 

Linear bounded Automata

q0
a: A | R

q1 q2 q3

q5

b: B | R

a; a | R

A: A | R q4

b: b | R

c: C | R

c: C |R

B: B |L
C: C |L

anbncn, n ≥ 1

a; a → R
q1 q2

b; B → R b; b → R
q2

c; C → L
q2

…

A a B b C⋊ ⋉

:  | L⋉ ⋉

a: A | R

B: B |R
C: C |R

 :  |accept⋊ ⋊

The head can go any direction, here I just 
show one alternative automata; the string 
is accepted once there is only terminal 
symbols on the tape, such as AABBCC.

S → abc | aAbc
Ab → bA
Ac → Bbcc
bB → Bb
aB → aa | aaA
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Swiss German cross-serial  
dependencies

anbncn, n ≥ 1
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Three models

Model Format Notation
Type-1
context-sensitve

φAψ→φωψ φ, ω, ψ: non-empty string of either terminal 
or non-terminal

Type-2
context-free

A → ω ω: non-empty string of either terminal or 
non-terminal

Type-3
regular

A → xB  or A → x x: terminal, A/B: nonterminal



a → X
b → Y
c → Z

q0
a; X | R

q1 q2 q3

q5

Y; Y | R

b; Y | R

a; a | R

;  | R⋊ ⋊q4

Z; Z | R

b; b | R

c; Z | L

Y; Y | L
Z; Z | L

Z; Z | R
Y; Y | R

Y; Y | R

a; a | L

Y; Y | R X; X | Lanbncn, n ≥ 1

X; X | R

X



Recursively Enumerable

push-down

finite-state

linear bounded 

Turing machine

context-free

context-sensitive

recursively enumerable 

regular

Turing Machine

… …
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Turing (1936)



Turing Machine

… …

Physically…

Demonstration
23

https://www.youtube.com/watch?v=E3keLeMwfHY


Tape
Turing Machine

… …

Finite-state Transducer

?
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The Halting Problem
• Whether there exists an algorithm that can always determine, for any 

arbitrary computer program and its input, whether the program will 
eventually stop running (halt) or continue to run indefinitely.

• Here is a paradoxical program that halts if and only if it does not halt.

X



Why does it matter?
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 from Searls (2012)

Space Complexity

O(n3)

O(n)

O(2n)



Space complexity
• Big O notation: O(g(n)) reads “its complexity is bounded 

by g(n)”
• g(n) is a function that has its own growth rate, and the 

algorithm here doesn’t grow faster than that (“bounded”).

• Exponential complexity is usually considered infeasible 
for human cognition.

• Caveat: complexity is the worst-case analysis. e.g., Dyck 
language requires  but some other non-regular 
languages can still be computed in linear complexity. e.g., 

 corresponds to . 

O(n3)

anbn, n ≥ 1 O(n)
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Complexity-learnability correlation
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• This correlation seems like an common assumption in 
previous FLT and AGL works.

• Known facts: Some more complex patterns are indeed 
harder to learn in AGL, such as first-last harmony vs. 
regular harmony in natural languages. 

• What do you think? How should we measure learnability?



Does complexity still matter?

0

250000

500000

750000

1000000

50s 60s 70s 80s 90s 00s 10s 20s

Computing power (Million Instructions per sec)

Rule-based 
NLP

Statistical 
NLP

Deep 
Learning
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Hardware Comparison

A crude comparison of a leading supercomputer, Summit; a typical personal 
computer of 2019; and the human brain. 

Russel & Norvig (2022) AI, A Modern Approach; Fig 1.2
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~355 years to train GPT-3 on a single NVIDIA Tesla V100 GPU, which is even more 
powerful than personal computer in terms of hardware.

Open question: is it feasible for children?

https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf22/dgx-pod/nvidia-dgx-nlp-solution-brief.pdf


Nihilists’ FAQ
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“But is ___ psychologically real?”
“Do you really believe ___ exist in our brain?”

plug in any formal/computational models for cognition.
e.g., State machines, Rewrite rules, Optimality-Theoretic 

grammar, Bayesian networks, Neural networks, …

“What about ___?”
plug in anything that is not in your simplified data

e.g., noise, substance, gradience, variability, prosody, …

All are important questions that kept me awake at night.
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• Most linguists are on the first two levels;
• In practice, we need many working hypothese for all three 

levels to work together;
• The final product is only an approximation of human 

cognition that we use to ask scientific questions and test 
against real-world data.

Computational: what are the problems and the goals? what are harder to compute?

Algorithmic/Representational: what representations the system uses and how it 
manipulates those representations?

Implementational: how can the system be realized physically?

Marr (1982) three levels of an information processing system
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MathLing: logical definition of types of languages (regular, context-free, context-
sensitive) and structure of formalisms (automata, rewrite rules, …).

The content of specific formal/computational models

Computational: what are the problems and the goals? what are harder to compute?

Algorithmic/Representational: what representations the system uses and how it 
manipulates those representations?

Implementational: how can the system be realized physically?

Marr (1982) three levels of an information processing system



Working and long-term memory
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• Quick experiment: what are the words you read in last 
slide and what’s the last five sentence I just said and 
what’s the weather like today and who’s your favorite 
linguist and what’s the answer of 54321 * 12345…



Timeless insights of FLT
• Essentially, it touches on fundamental questions in any 

types of computing: 
1. what do you need to store in the memory during the 

computation? 
2. how much memory do you need?
3. what is a good grammar for the data we have?

• Same questions for human cognition: natural language 
(Faculty of Language Narrow). and other computation, 
such as problem-solving.
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What are good grammars?

Two extremes:
• Store nothing: 

• Everything: 

“An interesting grammar is one that sits in between these two 
extremes, yielding constrained productivity.”

—Hunter (2020) “The Chomsky Hierarchy”

G = {}

G = {s ∈ S}, S includes all encoutered strings

36



Natural Languages
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Where are natural languages 
located?

context-free

context-sensitive

recursively enumerable 

regular

Swiss German Crossing Dependencies

English Nested Embeddings

Navajo Sibilant Harmony
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more working memory
more complex
more logical power
less restricted



Mildly Context-Sensitive
• 1980s: Find the classes that superset context-free, but have 

polynomial complexity
• Tim Hunter’s tutorials

https://timhunter.humspace.ucla.edu/lsa2023

TAG

MG

context-sensitive

context-free

Minimalist Grammar (Chomsky 1995; Stabler 1997)

Tree Adjoining Grammar (Joshi et al. 1991)

Combinatory Categorial Grammar (CCG) & Linear 
Indexed Grammar (LIG) (Weir 1988; Steedman 2000)
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https://timhunter.humspace.ucla.edu/lsa2023
https://timhunter.humspace.ucla.edu/lsa2023/07-mg.pdf
https://timhunter.humspace.ucla.edu/lsa2023/06-tag.pdf
https://timhunter.humspace.ucla.edu/lsa2023/05-ccg-lig.pdf
https://timhunter.humspace.ucla.edu/lsa2023/05-ccg-lig.pdf


(Sub-)regular Syntax

Finite-State Tree Automata
Graf (2023) SCiL paper: “Subregular Tree Transductions, 
Movement, Copies, Traces, and the Ban on Improper 
Movement the Ban on Improper Movement”
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https://timhunter.humspace.ucla.edu/lsa2023/04-tree-grammars.pdf
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1307&context=scil


Subregular Hierarchy
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Reference Text

X

There are some discrepancies between the definitions in 
Jäger & Rogers (2012) and Heinz (2018).
I follow the later for consistency. It is also more intuitive 
for phonologists.



k-factors

Assume the alphabet = {a, b}
Subregular languages always keep track of some window 
of width k in a string:

1. Successor relation (+1 or ), e.g., ab, ba, …
2. Predecessor relation (<), e.g., a…b, b…a, …

⊲

42



TAG

MG

context-sensitive

 Heinz (2018)



Strictly k-Local

e.g. No aa and no bb
G = aa  bb¬ ∧ ¬
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Conjunction of Negative Literals: , ¬ ∧





Suffix Substitution Closure

46

A stringset L is SL if there is a k such that for all strings u1, 
v1, u2, v2, (and a substring) x with the length equal to k−1, 
it is the case that if u1xv1 and u2xv2 belong to L then u1xv2 
belongs to L as well.

e.g. G = aa  bb 
L = {ab, ba, aba, bab, baba, abab, ababa, babab, abababa…}

¬ ∧ ¬
Rogers & Pullum (2011)

say we keep track of x = a

u1  = ab,  v1 = ba, u2 = abab, v2 = baba

u1xv1  = ababa,  u2xv2 = ababababa, u1xv2 = abababa

“Content before previous k-1 symbols won’t affect the well-formedness of the string.”



Locally k-Testable
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Proposition Logic: , , ¬ ∧ ∨

we got implication , biconditional  for free→ ↔

A → B ⇔ ¬A ∨ B

e.g. No ab and Some b words
G = ab  (ba  bb  b   b)¬ ∧ ∨ ∨ ⋉ ∨ ⋊





Substring Equivalence
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e.g. G = ab  (ba  bb  b   b) 
L = {ba, bba, bbba, …}

¬ ∧ ∨ ∨ ⋉ ∨ ⋊

say we keep track of k = 2

A stringset L is LT if there is a k such that for all strings u and v, 
if u and v have the same set of substrings of length k then either 

both u and v belong to L or both u and v do not belong to L.

u  = bba,  v = bbba both belong



Locally Threshold Testable
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First-Order Logic: , , , , , ¬ ∧ ∨ → ∀x ∃x

e.g. One b words
Gone-b  = (∃x)[b(x) ∧ (¬∃y)[b(y) ∧ ¬x ≈ y]]





Substring Threshold Equivalence
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e.g. Gone-b  = (∃x)[b(x) ∧ (¬∃y)[b(y) ∧ ¬x ≈ y]]

say we keep track of k = 2, and t = 2

{ab, ba} for u  = aba, {ba, ab} for v = bab, u belong but v doesn’t, 
meaning L is not LTT

A stringset L is LTT if there is a k and a t such that for all strings 
u and v, if u and v have the same number, up to some 

threshold t, of substrings of length k then either both u and v 
belong to L or both u and v do not belong to L.

{bb, ba} for u  = bba, {ba, ab} for v = bab, neither belong to L, 
meaning L might be LTT



Monadic Second-Order Logic
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First-Order Logic: , , , , , 
Monadic Second-Order Logic: , , , , , , , 

¬ ∧ ∨ → ∀x ∃x
¬ ∧ ∨ → ∀x ∃x ∀X ∃X

First-Order:
 Gone-b  = (∃x)[b(x) ∧ (¬∃y)[b(y) ∧ ¬x ≈ y]]

Monadic Second-Order Logic:
∃X(∀x(X(x) ↔ b(x)) ∧ ∃x(X(x)) ∧ ∀y∀z((X(y) ∧ X(z)) → y = z))

“Create X for b symbol {b}, and if a symbol in the string is already in X, others cannot be”



TAG

MG

context-sensitive

 Heinz (2018)



FLT and Artificial 
Grammar Learning
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AGL setting

• Intended set (I): Target language
• Familiarization set (F): Training data, subset of I
• Discrimination set (D): some in I, some not.

• Jäger & Rogers had a graph to show the subset problem
• Stimuli seem a bit unreliable for more complex classes.
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Familiarization set 1
gogi gogimi
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Familiarization set 2
mipu mipumu
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Discrimination set 1

gipumu gipumi
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Discrimination set 2

dopimi dopimu



Doing AGL 
• Intended set (I): Tier-based Strictly 2-Local vowel harmony 

pattern {*[+round][-round], *[-round][+round]}
• vs. First-Last harmony in testing phase

• I wrote a Python code for creating the audio stimuli based on 
the given wordlist, using Google Text-to-Speech library.

• The visual stimuli are created using OpenAI DALL-E 3, 
“create a picture of a cute creature called gogi”

First-last TSL

Stem Stem-plural Stem Stem-plural

mipu mipumu mipu mipumu
gogi gogimi gogi gogimi

… … … …



Homework
Describe Japanese syllable structure in the most restrictive 
logic and automata you learned. Most syllables in Japanese 
conform to (C)V(N), where C is a consonant, V is a vowel, and 
N is a nasal consonant that can appear at the end of syllables. 

Japanese English Syllable 
Structuresakura さくら Cherry blossom CV.CV.CV

tomodachi ともだち Friend CV.CV.CV.CV
shinbun しんぶん Newspaper CVN.CVN
nihongo にほんご Japanese Language CV.CVN.CV
tsukue つくえ Desk CV.CV.V

Optional: write a code to recognize Japanese syllable structure!



Vote for topics

• Transducers and morphophonology
• Model-theoretic phonology (Heinz 2018)
• Computational syntax (Hunter 2023)
• Myhill-Nerode and intersubstitutability (Hunter 2023)
• Connection to typology and learnability
• Weighted/probabilistic finite-state automata
• Connection to machine learning: Jeff Heinz and 

colleagues's MLRegTest; Svete & Cotterel 2023

https://arxiv.org/abs/2310.05161

